Deep Learning with H2O in Python

Step 1-  First of all , we need to install H2o package in Python.

on anaconda prompt
pip install h2o

Step 2-  Initialize and start the cluster -

h2o.init()
from h2o.estimators.deeplearning import H2ODeepLearningEstimator



Step 3-  load train and test data set-

train = h2o.import_file("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv")

Step 4-  Creating test and train data set using split-

splits = train.split_frame(ratios=[0.75], seed=1234)



Step 5-  Configuring the model-

model = H2ODeepLearningEstimator(distribution = "AUTO",activation = "RectifierWithDropout",hidden = [32,32],input_dropout_ratio = 0.2,l1 = 1e-5,epochs = 10)

Step 6-  train(fit the model)-

model.train(x="sepal_len", y=["petal_len"], training_frame=splits[0])

Step 7-  predicting using trained model and creating a new column in test data-

(splits[1]['predicted_sepal_len'])=model.predict(splits[1])


reference-   complete book is present at-

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf


Comments

Popular posts from this blog

Speech Recognition using PyAudio and SpeechRecognition Libraries

Automatically open and do some actions on web pages in python using different packages

open multiple sites in python Script using web browser package