Date TIme in Python for data scientists

python date datatype- datetime
pandas date datatype- Timestamp

1) creating pandas datframe with string dates value

## datetime
date_data= pd.DataFrame(np.random.randint(10,100, (4,3)), columns=['A','B','C'])
dates= ['2 june 2013', '5 Aug 2015', '2015-07-09', '7/12/2014']
date_data.index= dates


A B C
2 june 2013 52 61 89
5 Aug 2015 21 69 89
2015-07-09 88 23 13
7/12/2014 43 39 21
creating string into pandas datetime format-

date_data.index= pd.to_datetime(date_data.index)
date_data

A B C
2013-06-02 59 93 77
2015-08-05 33 15 28
2015-07-09 63 19 25
2014-07-12 29 36 92
2) Time difference in pandas-

pd.Timestamp('12.03.2019')- pd.Timestamp('12 Aug 2018')

Timedelta('478 days 00:00:00')

3) Return a fixed frequency DatetimeIndex -


cum_array= pd.DataFrame({'colA': np.random.randint(1,5,9).cumsum(), 'colB': np.random.randint(-4,10,9)}) dates=pd.date_range('10-10-2019','15-10-2019', periods=9) cum_array.index= dates cum_array.diff() # provides difference

4) plotting time series

import matplotlib.pyplot as plt
%matplotlib inline
cum_array.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x2fd605b8be0>
In [ ]:

Comments

Popular posts from this blog

Speech Recognition using PyAudio and SpeechRecognition Libraries

Automatically open and do some actions on web pages in python using different packages

open multiple sites in python Script using web browser package